Skip to main content
Intelligent AI assistant for contact center agents to boost productivity.

Overview

Agent AI provides real-time assistance to human agents:
  • Suggested responses based on conversation context
  • Automated call and chat summaries
  • Knowledge base search integration
  • Next-best-action recommendations

How It Works

┌─────────────────────────────────────────────────────────────────┐
│                    Live Conversation                             │
│                                                                  │
│  Customer: "I received the wrong item in my order"              │
└─────────────────────────────────┬───────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                       Agent AI Engine                            │
│                                                                  │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐              │
│  │  Context    │  │  Knowledge  │  │  Response   │              │
│  │  Analysis   │  │  Search     │  │  Generation │              │
│  └─────────────┘  └─────────────┘  └─────────────┘              │
└─────────────────────────────────┬───────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                    Agent Desktop Widget                          │
│                                                                  │
│  Suggested Response:                                             │
│  "I apologize for the inconvenience. I can help you with a      │
│   replacement or refund. Let me pull up your order details..."  │
│                                                                  │
│  Relevant Knowledge:                                             │
│  • Wrong Item Policy (confidence: 95%)                          │
│  • Return Process Guide (confidence: 87%)                       │
│                                                                  │
│  Recommended Actions:                                            │
│  [Create Return] [Issue Refund] [Escalate to Supervisor]        │
└─────────────────────────────────────────────────────────────────┘

Features

Real-Time Suggestions

Contextual response suggestions during conversations:
FeatureDescription
Auto-suggestSuggestions appear as customer speaks
One-click useInsert suggestion with single click
Edit before sendModify suggestions as needed
Learn from editsSystem improves from agent modifications
Configuration:
Suggestions:
  trigger: continuous
  display_count: 3
  confidence_threshold: 0.7
  sources:
    - knowledge_base
    - canned_responses
    - conversation_history
  tone: professional

Automated Summaries

Generate conversation summaries automatically:
Summary TypeWhen Generated
Real-timeUpdated as conversation progresses
After-callComplete summary at interaction end
DispositionStructured outcome summary
Summary configuration:
Auto-Summary:
  format: structured
  sections:
    - customer_issue
    - resolution
    - follow_up_required
  length: concise
  auto_save_to_crm: true

Knowledge Assistance

Integrated knowledge search:
  • Search triggered automatically by conversation context
  • Manual search with natural language queries
  • Results ranked by relevance
  • Source citations included

Next-Best-Action

Recommended actions based on context:
NBA Rules:
  - condition: sentiment == "frustrated" AND issue_unresolved
    action: offer_supervisor_escalation
    priority: high

  - condition: customer_tier == "premium" AND wait_time > 5min
    action: offer_compensation
    priority: medium

  - condition: issue_type == "billing"
    action: show_billing_tools
    priority: normal

Configuration

Enable Agent AI

  1. Navigate to Agent AIConfiguration
  2. Enable Agent AI for desired queues
  3. Configure feature settings
  4. Test with pilot agents

Feature Settings

SettingOptions
Suggestion modeContinuous, On-demand, Disabled
Auto-summaryEnabled, Disabled
Knowledge searchAuto, Manual, Both
NBAEnabled, Disabled

Integration

Connect Agent AI to:
  • Search AI — For knowledge retrieval
  • CRM — For customer context
  • Case management — For action execution
  • Quality AI — For coaching feedback

Agent Experience

Desktop Widget

Agent AI appears as a widget in the agent console:
┌─────────────────────────────────────┐
│  Agent AI                    [─] [×]│
├─────────────────────────────────────┤
│                                     │
│  💡 Suggested Response              │
│  ┌─────────────────────────────────┐│
│  │ I understand your concern about ││
│  │ the billing charge. Let me...   ││
│  └─────────────────────────────────┘│
│  [Use] [Copy] [👍] [👎]              │
│                                     │
│  📚 Knowledge                       │
│  • Billing FAQ (95%)                │
│  • Refund Policy (88%)              │
│  [Search manually...]               │
│                                     │
│  ⚡ Quick Actions                   │
│  [Refund] [Credit] [Escalate]       │
│                                     │
└─────────────────────────────────────┘

Feedback Loop

Agents can rate suggestions:
  • Thumbs up — Good suggestion
  • Thumbs down — Unhelpful suggestion
  • Edits — System learns from modifications
Feedback improves suggestion quality over time.

Analytics

Agent AI Metrics

MetricDescription
Suggestion acceptance% of suggestions used
Time savedHandle time reduction
Knowledge utilizationSearches and clicks
NBA conversionRecommended actions taken

Quality Impact

Track quality improvements:
  • First contact resolution rate
  • Customer satisfaction scores
  • Quality evaluation scores
  • Handle time trends

Best Practices

Deployment

  1. Start with a pilot group of agents
  2. Gather feedback and iterate
  3. Roll out gradually by queue/team
  4. Monitor adoption and adjust

Knowledge Quality

  • Keep knowledge base current
  • Remove outdated content
  • Add content for common queries
  • Monitor search failures

Agent Training

  • Introduce Agent AI in agent training
  • Explain feedback mechanism importance
  • Show how to use suggestions effectively
  • Address concerns about AI assistance