Skip to main content
Automated quality management and conversation analysis.

Overview

Quality AI enables you to:
  • Evaluate 100% of customer interactions
  • Identify coaching opportunities automatically
  • Monitor compliance and adherence
  • Drive continuous improvement with data

How It Works

┌─────────────────────────────────────────────────────────────────┐
│                   Customer Interactions                          │
│                 (Voice, Chat, Email, Social)                     │
└─────────────────────────────────┬───────────────────────────────┘


┌─────────────────────────────────────────────────────────────────┐
│                      Quality AI Engine                           │
│                                                                  │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐              │
│  │  Speech/    │  │  Evaluation │  │  Insight    │              │
│  │  Text       │  │  Scoring    │  │  Generation │              │
│  │  Analysis   │  │             │  │             │              │
│  └─────────────┘  └─────────────┘  └─────────────┘              │
└─────────────────────────────────┬───────────────────────────────┘

           ┌──────────────────────┼──────────────────────┐
           ▼                      ▼                      ▼
┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Auto-Scores   │    │  Coaching       │    │   Compliance    │
│   & Evaluations │    │  Assignments    │    │   Monitoring    │
└─────────────────┘    └─────────────────┘    └─────────────────┘

Evaluation Criteria

Standard Criteria

Pre-built evaluation criteria:
CriteriaDescription
GreetingProper introduction and identification
EmpathyAcknowledging customer emotions
Issue understandingCorrectly identifying the problem
ResolutionProviding accurate solution
ClosingProper wrap-up and next steps
ComplianceFollowing required disclosures

Custom Criteria

Create custom evaluation criteria:
Criteria: Product Knowledge
Description: Agent demonstrates accurate product knowledge
Weight: 15%
Scoring:
  - 5: Excellent - Comprehensive, accurate information
  - 4: Good - Mostly accurate with minor gaps
  - 3: Acceptable - Basic knowledge demonstrated
  - 2: Below expectations - Significant gaps
  - 1: Unacceptable - Incorrect information provided
Auto-evaluate: true
Keywords:
  positive: ["correct", "accurate", "helpful"]
  negative: ["wrong", "incorrect", "misinformation"]

Evaluation Forms

Group criteria into evaluation forms:
Form: Customer Service Standard
Criteria:
  - greeting (10%)
  - empathy (15%)
  - issue_understanding (20%)
  - resolution (30%)
  - product_knowledge (15%)
  - closing (10%)
Pass threshold: 80%
Apply to:
  - queue: support
  - channel: all

Auto-Scoring

How Auto-Scoring Works

AI automatically evaluates interactions:
  1. Speech/text analysis — Transcribe and analyze conversation
  2. Criteria matching — Map to evaluation criteria
  3. Scoring — Assign scores based on evidence
  4. Confidence — Flag low-confidence scores for review

Configuration

Auto-Scoring:
  enabled: true
  evaluation_rate: 100%  # Evaluate all interactions
  confidence_threshold: 0.8
  human_review:
    - low_confidence_scores
    - failed_evaluations
    - random_sample: 5%

Calibration

Ensure consistent scoring:
  1. Select calibration sample
  2. Have multiple evaluators score
  3. Compare scores and discuss differences
  4. Adjust criteria definitions
  5. Re-train auto-scoring model

Conversation Mining

Topic Analysis

Automatically identify conversation topics:
AnalysisDescription
Topic clusteringGroup conversations by theme
Trend detectionIdentify emerging topics
Sentiment by topicTrack sentiment for each topic
Volume trackingMonitor topic frequency

Root Cause Analysis

Identify drivers of quality issues:
Quality Issue: Low resolution scores in billing queue

Root Causes Identified:
├── 45% - Complex billing system navigation
├── 30% - Outdated knowledge articles
├── 15% - Missing escalation paths
└── 10% - Training gaps on new features

Insights Dashboard

Automatic insights:
  • Top coaching opportunities
  • Emerging quality trends
  • Best performing agents/teams
  • Areas needing attention

Coaching

Auto-Assignment

Automatically assign coaching based on scores:
Coaching Rule: Resolution Improvement
Trigger:
  criteria: resolution
  score: < 3
  count: 3 consecutive
Action:
  assign_coaching: resolution_training
  notify: supervisor
  priority: high

Coaching Workflow

[Quality Issue Detected]


[Coaching Assigned to Supervisor]


[Supervisor Reviews Evidence]


[Coaching Session Scheduled]


[Session Completed]


[Follow-up Evaluation]

Evidence Attachment

Coaching includes relevant evidence:
  • Conversation transcript
  • Audio recording
  • Evaluation scorecard
  • Specific timestamps/sections
  • Comparison to best practices

Compliance Monitoring

Compliance Rules

Define compliance requirements:
Compliance: PCI-DSS Card Handling
Rules:
  - must_not_say: ["full card number", "CVV"]
  - must_say: ["secure", "encrypted"]
  - action_required: mask_card_data
Alert:
  severity: critical
  notify: compliance_team

Required Disclosures

Track required script elements:
DisclosureRequired For
Recording noticeAll calls
Rate disclosureFinancial products
Terms and conditionsNew accounts
Privacy policyData collection

Compliance Dashboard

Monitor compliance metrics:
  • Compliance rate by disclosure type
  • Violations by agent/team
  • Trend analysis
  • Alert history

Taxonomy Builder

Create Taxonomies

Organize quality categories:
Taxonomy: Quality Categories
├── Communication
│   ├── Clarity
│   ├── Tone
│   └── Active listening
├── Knowledge
│   ├── Product
│   ├── Process
│   └── Policy
├── Problem Solving
│   ├── Issue identification
│   ├── Solution accuracy
│   └── Efficiency
└── Compliance
    ├── Disclosures
    ├── Data handling
    └── Regulatory

Apply Taxonomies

Use taxonomies for:
  • Structured evaluation forms
  • Analytics categorization
  • Coaching focus areas
  • Reporting dimensions

Analytics

Quality Dashboards

DashboardMetrics
OverviewQuality score trends, pass rates
Agent performanceIndividual scores, improvement
Team comparisonTeam-level benchmarking
Criteria analysisPerformance by criteria
ComplianceCompliance rates, violations

Reports

Automated reports:
  • Daily quality summary
  • Weekly team performance
  • Monthly trend analysis
  • Compliance audit reports